

- Baugrunduntersuchungen
- Gründungsberatung
- Prüfungen im Erdbau

Baugrundinstitut Richter · L.-Herrmann-Straße 4 · 02625 Bautzen

1. ERGÄNZUNG ZUM GEOTECHNISCHEN BERICHT Liselotte-Herrmann-Straße 4 02625 Bautzen

Telefon: 03591 270 647 Fax: 03591 270 649 Funk: 0174 91 577 76

E-Mail: baugrund-richter @t-online.de

Inhaber:

Dipl.-Ing. Steffen Richter Waltersdorfer Straße 7 02779 Großschönau

Bauvorhaben: Umbau und Sanierung Waldbühne GHT Görlitz-Zittau

im Kurort Jonsdorf, Flurstück 686/2

Bezug: Ergänzende Aufschlüsse

Auftragsnummer: 4756/23

Auftraggeber: Landkreis Görlitz

Bahnhofstraße 24 02826 Görlitz

Verteiler: Auftraggeber, Amt für Hoch- und Tiefbau, Herr Röntsch 1-fach

Architekturbüro Müldener per E-Mail

Ingenieurbüro Jungmichel per E-Mail

IHR Bauplan per E-Mail

1 VERANLASSUNG, ALLGEMEINES

Das **Baugrundinstitut Richter** wurde mit der Durchführung von ergänzenden Aufschlüssen und deren Auswertung beauftragt. Gegenstand des Auftrages waren dabei neben der obligatorischen Beschreibung und Bewertung der Baugrundverhältnisse eine Beurteilung der Versickerungsfähigkeit des Untergrundes sowie eine Schadstoffuntersuchung an den potentiellen Aushubmassen.

Grundlage der Bearbeitung sind folgende Unterlagen:

[1] Aufgabenstellung vom 08.08.2024

Auftrag 4756/23 - E 1

Waldbühne Jonsdorf

- 2
- [2] Lageplan ohne Maßstab mit Eintragung der vorgegebenen Aufschlüsse im Bereich Waldbühne
- [3] Lageplan im Maßstab 1 : 250 mit Eintragung der vorgegebenen Aufschlüsse im Bereich Zufahrt und Regenrückhaltebecken
- [4] Lageplan (Luftbild) im Maßstab 1 : 250 mit Eintragung der vorgegebenen Aufschlüsse im Bereich Parkplatz an der Großschönauer Straße

Den oben stehenden Unterlagen ist zu entnehmen, dass nördlich vom Gelände der Waldbühne ein Regenrückhaltebecken errichtet und entlang der Großschönauer Straße ein Parkstreifen angelegt wird. Innerhalb des Waldbühnengeländes werden mehrere Gebäude errichtet bzw. umgebaut. Darüber hinaus sind Straßenbaumaßnahmen in den Zufahrten geplant. Details der einzelnen Baumaßnahmen sind dem Unterzeichner nicht bekannt.

2 UNTERSUCHUNGSERGEBNISSE

Untersuchungsprogramm

Das Untersuchungsprogramm war hinsichtlich Anzahl, Lage und zum Teil auch Tiefe auftraggeberseits vorgegeben. Es wurden insgesamt 17 Kleinrammbohrungen (KRB 31 bis KRB 47) abgeteuft. Die Tiefe der meisten Bohrungen wurde dabei durch den relativ hoch anstehenden Fels begrenzt. Ansonsten wurden Aufschlusstiefen zwischen 2 m und 3 m erreicht.

Die Lage der Aufschlüsse, einschließlich der bereits aus der 1. Untersuchung ausgeführten, ist in der Anlage 1 dargestellt. In der Anlage 2 sind die Aufschlussergebnisse dokumentiert.

Allgemeine Bodenbeschreibung

Mit den neuen Bohrungen wurden im Wesentlichen die Ergebnisse der bisherigen Baugrunduntersuchung bestätigt. Die maßgebliche Schichtenfolge wird von in geringer Tiefe anstehendem Fels (Sandstein) geprägt. Die Tiefenlage des schwach verwitterten Felses, der mit den Kleinrammbohrungen und Rammsondierungen verfahrensbedingt nicht mehr durchteuft werden konnte, ist dabei sehr unterschiedlich und variiert selbst zwischen benachbarten Bohrungen stark. Genaue Angaben dazu sind im Abschnitt 3 bezogen auf die einzelnen Baumaßnahmen enthalten.

Oberhalb des Felshorizontes stehen sandig ausgebildete Verwitterungsböden an, die meist bis knapp unter die jeweilige Geländeoberfläche reichen. Die Verwitterungsböden sind dabei meist mitteldicht gelagert. Der Übergang zum Fels erfolgt in der Regel relativ abrupt.

Lokal, bevorzugt im Bereich der Zuwegung und des Parkplatzes an der Großschönauer Straße, sind leichtplastische Tone, sog. Decklehme vorhanden.

Auftrag 4756/23 – E 1

Waldbühne Jonsdorf

3

Die geländenahen Schichten bestehen in den meisten der Aufschlüsse aus unterschiedlich zusammengesetzten Auffüllungen.

Grundwasser

Grundwasser wurde nur mit einzelnen Aufschlüssen, bevorzugt im Bereich des Orchestergrabens, des geplanten Rückhaltebeckens und im Bereich Imbiss/Gastronomie angetroffen. Der Grundwasserstand ist dabei offensichtlich starken jahreszeitlichen Schwankungen unterworfen und maßgeblich von den jeweiligen Witterungsverhältnissen abhängig. Genaue Angaben dazu sind im Abschnitt 3 enthalten.

Bodengruppen, -klassen und -kenngrößen

Hinsichtlich der erdbautechnischen und bodenphysikalischen Parameter gelten nach wie vor die Angaben in den Tabellen 1 und 2 des geotechnischen Berichtes vom 21.04.2023. Hier lieferten die ergänzenden Aufschlüsse keine neuen Erkenntnisse.

Homogenbereiche nach VOB-C 2016

Hinsichtlich der Homogenbereiche macht sich hingegen eine Überarbeitung notwendig.

Die bei der geplanten Baumaßnahme erdbautechnisch relevanten Schichten können unter Berücksichtigung der Ergebnisse der ergänzenden Aufschlüsse zu nachfolgend aufgeführten Homogenbereichen zusammengefasst werden. Die Homogenbereiche gelten dabei für folgende Norm:

ATV DIN 18300 (Erdarbeiten)

Tabelle 1: Zuordnung von Homogenbereichen

Bodenart	Homogenbereich
Oberboden	А
Auffüllungen	В
Ton	С
Sand	D
verwitterter Fels	E

Die für die einzelnen Homogenbereiche maßgeblichen Kenngrößen sind, ergänzend zu den Angaben in der Tabelle 1, in der folgenden Tabelle 4 enthalten. Dabei wird von der geotechnischen Kategorie GK 1 ausgegangen.

Auftrag 4756/23 – E 1

Waldbühne Jonsdorf

4

Tabelle 2: Bodenkennwerte für Homogenbereiche (Lockerböden)

Kammuranta		Homoger	nbereiche		
Kennwerte	Α	В	С	D	
ortsübliche Bezeichnung	Oberboden	Auffüllungen	Decklehm	Sand (Verwitte- rungsmaterial)	
Anteile Steine	bis 15 % möglich	bis 25 % möglich	bis 20 % möglich	bis 50 % möglich	
Anteil Blöcke	keine	< 2 %	< 1 %	bis 5 % möglich	
Konsistenz	-	-	weich bis steif	-	
Plastizität	-	-	leichtplastisch	-	
Lagerungsdichte	-	locker bis mitteldicht	-	mitteldicht bis dicht	
Bodengruppe nach DIN 18196	ОН	SU, SU ⁺ , GU, GU ⁺	TL, UL, in Lagen OT	SU – SU†	
Bodengruppe nach DIN 18915	7 – 10	-	-	-	

Der Fels (Homogenbereich E) konnte mit den Kleinrammbohrungen verfahrensbedingt nicht aufgeschlossen werden. Hier werden daher Kenngrößen angesetzt, wie sie unmittelbar unterhalb der Endteufen der vorzeitig abgebrochenen Bohrungen vorhanden sind. Eine genaue Beschreibung des Felshorizontes setzt Bohrungen im Kernbohrverfahren voraus, was bei der meist nur geringen Eingrifftiefe hier aus der Sicht des Unterzeichners nicht zwingend erforderlich ist.

Tabelle 3: Bodenkennwerte für Homogenbereiche (Festgestein)

Kennwerte	Homogenbereich
Kermwerte	E
Benennung	Sandstein
Wichte γ	21 – 23 kN/m³
Verwitterung	schwach bis stark verwittert
Druckfestigkeit	0,5 – 5 N/mm² ⁽²⁾
Trennflächenabstand	nicht bestimmbar

^{(2) ...} in größeren Tiefen bis 75 N/mm² möglich

Auftrag 4756/23 - E 1

Waldbühne Jonsdorf

5

3 BEWERTUNG DER UNTERSUCHUNGSERGEBNISSE

Gründungstechnische Angaben

Hier gelten prinzipiell die Angaben im geotechnischen Bericht vom 21.04.2023. Gründungskörper von Neubauten sind unter Berücksichtigung einer frostfreien Mindestgründungstiefe von 1 m durchweg auf den sandigen Verwitterungsböden oder im Fels abzusetzen. Aus den Aufschlüssen lassen sich hier für den gründungsfähigen Untergrund folgende Tiefen ableiten:

Imbiss ⇒ 1,5 ... 1,6 m unter GOK (Verwitterungsböden)

Freisitz Gastronomie ⇒ 1,0 ... 1,5 m unter GOK (Verwitterungsböden)

Orchestergraben

Im Bereich des Orchestergrabens stehen oberhalb der Sohle aufgefüllte Böden, darunter Verwitterungsböden an. Mit Fels ist ab ca. 1,2 ... 1,5 m unterhalb der Sohle an der Nordwestseite und ab ca. 0,5 ... 0,7 an der Südostseite zu rechnen. Nach Osten hin steigt der Fels dann steil an.

Bei der Baugrunduntersuchung 2023 wurde Grundwasser in etwa auf dem Niveau der Grabensohle angetroffen. Die jetzt ausgeführte Bohrung KRB 36 erbrachte einen Grundwasserstand von ca. 80 cm unterhalb der Sohle.

Wegebau

Die vorhandenen Wege haben im Bereich der Bohrungen nur geringmächtige Oberbauten. Außerhalb der Waldbühne sind unter dem hier vorhandenen Asphalt zwischen 7 cm und 10 cm mächtige Schottertragschichten vorhanden. Innerhalb der Waldbühne beschränkt sich die ungebundene Befestigung auf meist feinkornreiche, aufgefüllte Sande.

Im Falle eines Neubaus kommt das Planum im Bereich aller Bohrungen in aufgefüllten Böden oder in tonigen Decklehmen zu liegen. In den meist feinkornreicheren, sandigen Auffüllungen ist die Tragfähigkeit maßgeblich von den Witterungsverhältnissen vor und während der Bauzeit abhängig. Ausreichende Tragfähigkeiten sind hier nur in einem maximal erdfeuchten Zustand der Böden nachweisbar. Dazu sind die Auffüllungen intensiv nachzuverdichten. Bei höheren Wassergehalten, wie sie nach längeren Niederschlägen oder unmittelbar nach der Tauperiode zu erwarten sind, ist hier, sofern im Planum der Wege und Zufahrten übliche Tragfähigkeiten von $E_{v2} \ge 45$ MN/m² gefordert werden, eine mindestens 20 cm mächtige Planumsverbesserung aus einem trag- und verdichtungsfähigen Material einzuplanen.

Stehen im Planum tonige Decklehme an, ist in jedem Fall eine hier mindestens 30 cm mächtige Planumsverbesserung erforderlich.

BAUGRUND INSTITUT RICHTER

Auftrag 4756/23 - E 1

Waldbühne Jonsdorf

6

Hinsichtlich der frostsicheren Bemessung des Oberbaus ist durchgehend von der Frostempfindlichkeitsklasse F 3 (sehr frostempfindlich) auszugehen.

Parkplatz Großschönauer Straße

In diesem Bereich erbrachten die Bohrungen wechselnde Untergrundverhältnisse. Im Bereich der Bohrung KRB 46 liegen mit den hier im Planum anstehenden Verwitterungsböden ausreichende Tragfähigkeiten vor. Es genügt eine intensive Nachverdichtung. In den mit der Bohrung KRB 47 aufgeschlossenen lehmig-tonigen Böden ist hingegen analog wie beim Wegebau, eine mindestens 30 cm mächtige Planumsverbesserung zusätzlich zum eigentlichen Oberbau erforderlich.

Regenrückhaltebecken

Im Bereich des geplanten Regenrückhaltebeckens sind ab Tiefen zwischen ca. 2 m im oberen und ca. 2,5 m im unteren Geländebereich felsähnliche Böden mindestens der Bodenklasse 6 nach alter DIN 18300 zu erwarten. Darüber stehen sandige Auffüllungen und Verwitterungsböden an. Ab einer Tiefe von ca. 1,2 m ist in zunehmendem Maße mit Grundwasserandrang zu rechnen.

Die Durchlässigkeit der Auffüllungen und Verwitterungsböden ist in Abhängigkeit von den jeweiligen Ton- und Schluffgehalten unterschiedlich, liegt jedoch in jedem Fall bei $k_f > 1 \cdot 10^{-6}$ m/s und damit im Bereich der Versickerungsfähigkeit (siehe auch Abschnitt 4). Ist eine Versickerung im Becken nicht gewünscht oder zulässig, sind die Beckenböschungen und Sohlen mit schwer durchlässigen Böden oder mit entsprechenden künstlichen Materialen, wie z. B. Bentonitmatten, abzudichten. Vor dem Einbau der Abdichtung ist das Grundwasser bis unter die Beckensohle abzusenken. Die Abdichtung ist gegen Auftrieb zu sichern.

Für die Beckenböschungen werden ohne Berücksichtigung von gestalterischen Gesichtspunkten unterhalb des Einstauwasserstandes Neigungen von 1 : 2,5, oberhalb von 1 : 1,75 empfohlen.

4 ANGABEN ZUR VERSICKERUNGSFÄHIGKEIT DES UNTERGRUNDES

Grundlage der Untersuchung ist die ATV – Regelwerk Abwasser – Abfall/Arbeitsblatt A 138, 2002. Für Versickerungsanlagen kommen demnach Böden in Frage, deren k_f -Werte im Bereich von $5 \cdot 10^{-3}$ m/s bis $1 \cdot 10^{-6}$ m/s liegen. Darüber hinaus muss der potentielle Aquifer flächenhaft und in ausreichender Mächtigkeit verbreitet sein. Der Abstand des Grundwassers zur Sohle von Versickerungsanlagen muss mindestens 1 m betragen.

Unter Berücksichtigung der o. g. Randbedingungen sind die im Baubereich vorhandenen Verwitterungsböden (in der Anlage 2 orange dargestellt) zu betrachten. Diese stehen im Untersuchungsgebiet in flächenhafter Verbreitung und in ausreichender Mächtigkeit an.

Auftrag 4756/23 – E 1

Waldbühne Jonsdorf

nach dom

7

Aus dem stichprobenartig ermittelten Kornspektrum der Sande (Anlage 3) lassen sich nach dem empirischen Verfahren von Beyer/Schweiger und unter Berücksichtigung des Korrekturfaktors der ATV A 138 von 0,2 folgende Durchlässigkeiten ableiten:

Tabelle 4: k_f-Wert aus Kornverteilungskurven

Entnahmeort	Entnahmetiefe m u. Gelände	Bodenart		k _f -Wert [m/s]
KRB 31	1,7 – 2,5 m	mgS, g'	5 %	3 ⋅ 10 ⁻⁵
KRB 33	1,5 – 3,0 m	mgS, g', u'	12 %	4 · 10 ⁻⁶
KRB 38	1,0 – 2,5 m	mgS, g', u'	10 %	1 · 10 ⁻⁵
KRB 41	0,8 – 2,3 m	mgS, g⁺, u	16 %	1 · 10 ⁻⁶
KRB 46	0,3 – 2,0 m	mgS, g'	3,5 %	5 · 10 ⁻⁵

Die Tabelle 4 zeigt, dass die Durchlässigkeiten in Abhängigkeit von den jeweiligen Ton- und Schluffgehalten starken Schwankungen unterworfen sind. Da eine Abgrenzung der einzelnen Schichten nicht möglich ist, wird für die sandigen Verwitterungsböden einheitlich der Ansatz einer mittleren Durchlässigkeit von $k_f = 5 \cdot 10^{-6}$ m/s (als Bemessungswert) empfohlen. Diese Durchlässigkeit liegt innerhalb der Bandbreite für versickerungsfähige Böden gemäß ATV A 138.

Prinzipiell versickerungsfähig sind auch die im Baubereich vorhandenen Auffüllungen, deren Durchlässigkeit jedoch noch stärker variiert und versuchstechnisch nicht zu ermitteln ist. Ggf. sollte hier von einer mittleren Durchlässigkeit von $k_f = 1 \cdot 10^{-6}$ m/s ausgegangen werden.

Einschränkungen hinsichtlich der Versickerung sind in den Bereichen mit Grundwasser vorhanden. Hier ist die Sohltiefe von Sickeranlagen so zu begrenzen, dass zum maximal zu erwartenden Grundwasserspiegel ein Mindestabstand von 1 m eingehalten werden kann. Als Bemessungswasserstand (MHGW) ist dabei ein Niveau anzunehmen, das 0,5 m über den 2024 ermittelten und in der Anlage 2 dokumentierten Grundwasserständen liegt.

5 SCHADSTOFFUNTERSUCHUNGEN

Zur Feststellung von umweltrelevanten Inhaltsstoffen in den potentiellen Aushubmassen wurden 3 Mischproben zusammengestellt und entsprechend dem Parameterumfang der Ersatzbaustoffverordnung (EBV), Anlage 1, Tabelle 3 chemisch analysiert.

BAUGRUND INSTITUT RICHTER

Auftrag 4756/23 – E 1

Waldbühne Jonsdorf

Die vorliegende Untersuchung hat dabei einen nur orientierenden Charakter zur Planung und Kostenabschätzung. Sie stellt keine Untersuchung im abfallrechtlichen Sinne dar. Diese Untersuchungen sind ggf. baubegleitend durchzuführen.

Die Probenahme konzentrierte sich dabei auf die im Baubereich vorhandenen Auffüllungen bzw. geländenahen Schichten. Die Mischproben lassen sich wie folgt charakterisieren:

Mischprobe MP 1 ⇒ (Regenrückhaltebecken)

KRB 40; Tiefe 0,1 bis 0,7 m

+ KRB 41; Tiefe 0,1 bis 0,8 m

+ KRB 42; Tiefe 0,25 bis 1,6 m

+ KRB 43; Tiefe 0,1 bis 0,6 m

Mischprobe MP 2 \Rightarrow (Weg/Zufahrtsstraße)

KRB 38; Tiefe 0,2 bis 1,0 m

+ KRB 39; Tiefe 0,17 bis 1,0 m

+ KRB 44; Tiefe 0,18 bis 1,3 m

+ KRB 45; Tiefe 0,15 bis 1,0 m

Mischprobe MP 3 ⇒ (Parkplatz Großschönauer Straße)

KRB 46; Tiefe 0,3 bis 1,0 m

+ KRB 47; Tiefe 0,3 bis 1,2 m

Die Analysenergebnisse sind in der Anlage 4 enthalten. Zur Übersicht wurden in der Anlage 5 die ermittelten Parameter den Zuordnungsklassen der EBV gegenübergestellt. Überschreitungen der Klasse BM-0 sind farbig hervorgehoben.

Aufgrund der meist hohen Ton- und Schluffanteile in den Prüfböden wurde bei der Bewertung von der Bodenart "Lehm" ausgegangen.

Aus den Analysenergebnissen lassen sich folgende Schlussfolgerungen ziehen:

In den <u>Mischproben MP 1 und MP 2</u> wird mit dem Parameter PAK im Feststoff die Klasse **BM-F3 der EBV überschritten**. Damit ist eine Wiederverwertung der betreffenden Aushubmassen nicht mehr zulässig. Sie sind auf eine Deponie zu verbringen, die die entsprechenden Annahmekriterien erfüllt. Zur Klärung der Deponieklasse sind ergänzende Untersuchungen nach Deponieverordnung erforderlich.

8

Auftrag 4756/23 - E 1

Waldbühne Jonsdorf

9

Die <u>Mischprobe MP 3</u> ist maßgeblich aufgrund von Grenzwertüberschreitungen bei mehreren Schwermetallen im Eluat in die **Klasse BM-F2** der EBV einzustufen. Die Möglichkeiten der Wiederverwendbarkeit aus umwelttechnischer Sicht sind in der Tabelle 7 der Anlage 2 zur EBV aufgeführt.

Der pH-Wert wurde dabei bewusst vernachlässigt, da dieser im vorliegenden Fall geogen durch die Sandsteinformation verursacht ist.

Unabhängig von der oben stehenden Einstufung ist für eine Verwertung in einer zugelassenen Anlage der durch die Mischproben repräsentierte Bodenaushub gemäß AVV als "Boden und Steine mit Ausnahme derjenigen, die unter 17 05 03 fallen" unter der ASN 17 05 04 als nicht gefährlicher Abfall zu deklarieren. Für den Nachweis der ordnungsgemäßen Entsorgung sind die Wiegescheine sowie der konkrete Einbauort ausreichend. Die Nachweisführung im elektronischen Nachweissystem ist nicht erforderlich.

Bautzen, 16.10.2024

BAUGHUND INSTITUT RICHTER
Lizelotte-Herrm In-Straße 4
02625 Pautzen

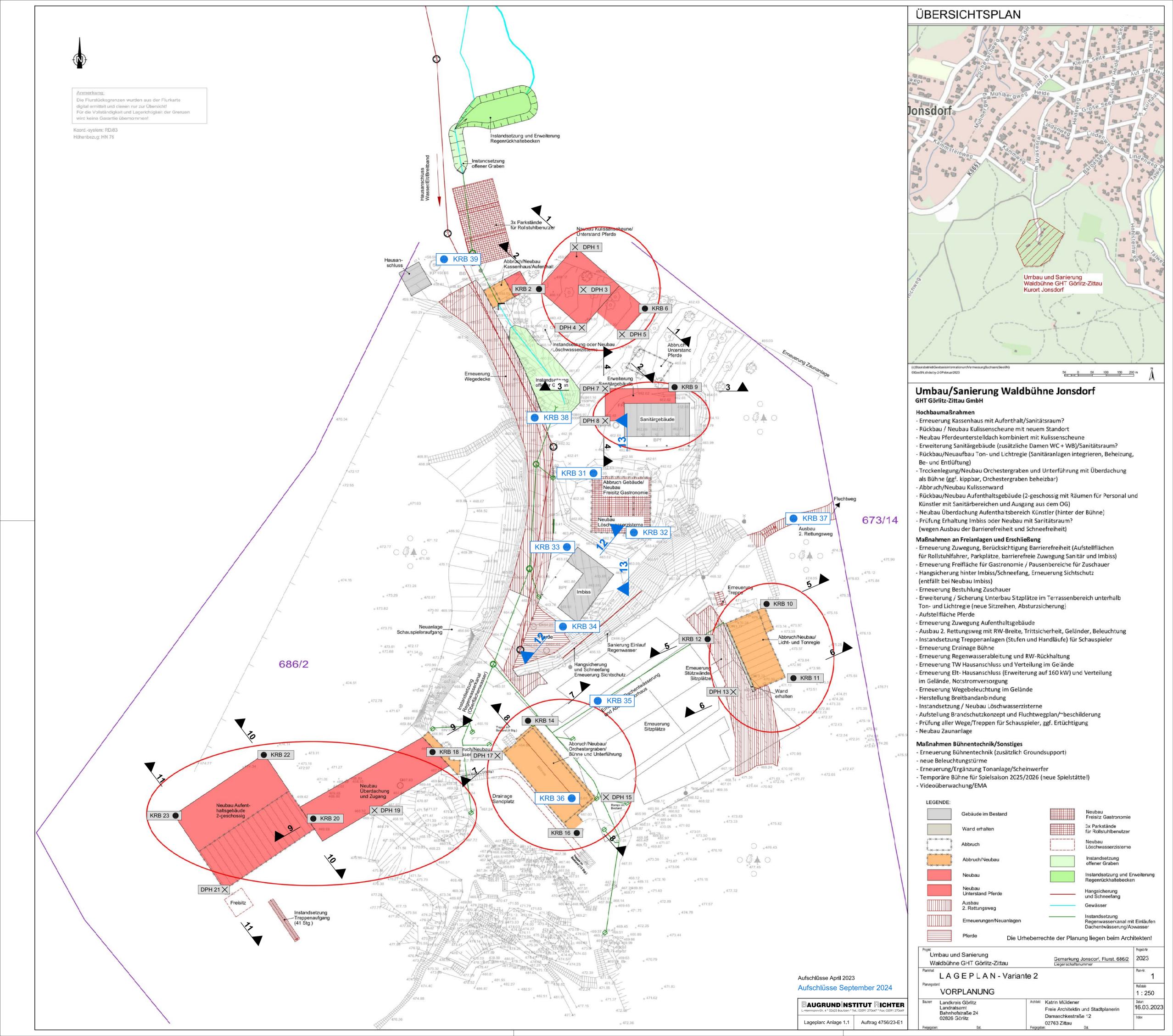
Telefon: 03/591/279 647 elefax: 03/591/270 649

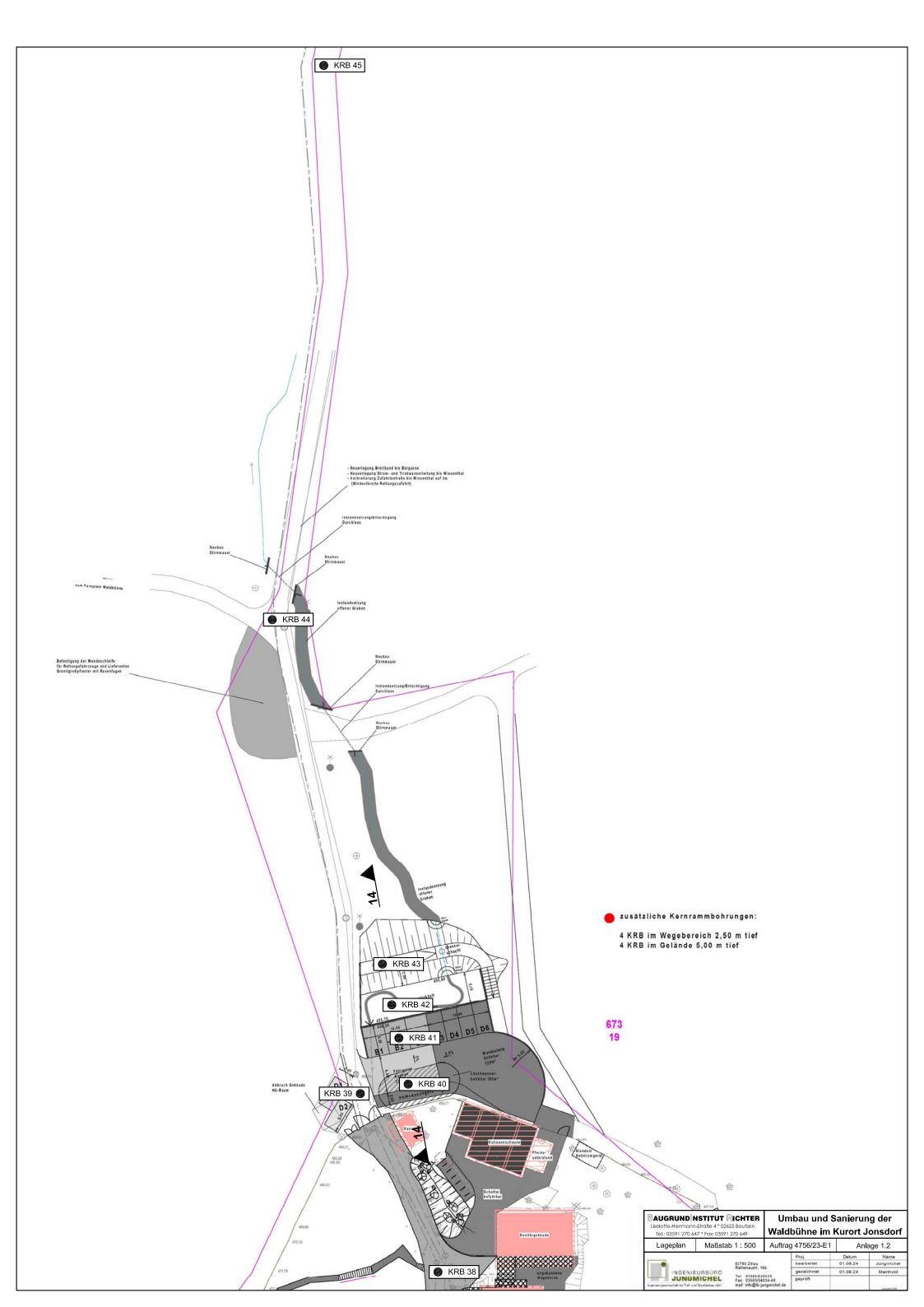
Dipl. Ing. St. Richter

Anlagen

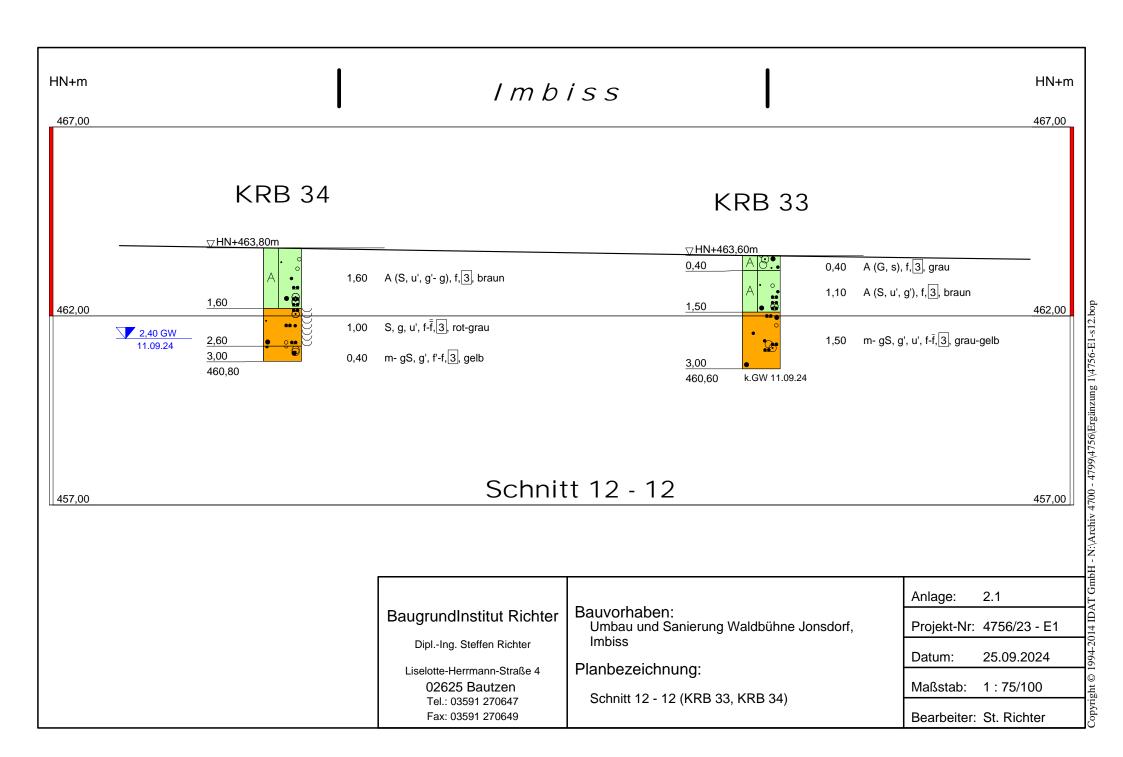
- 0 Legende
- 1 Lagepläne mit Aufschlüssen
- 2 Aufschlussergebnisse
- 3 Bodenmechanische Laborversuche
- 4 Analysenbericht
- 5 Gegenüberstellung der Analysenwerte mit Zuordnungswerten nach EBV

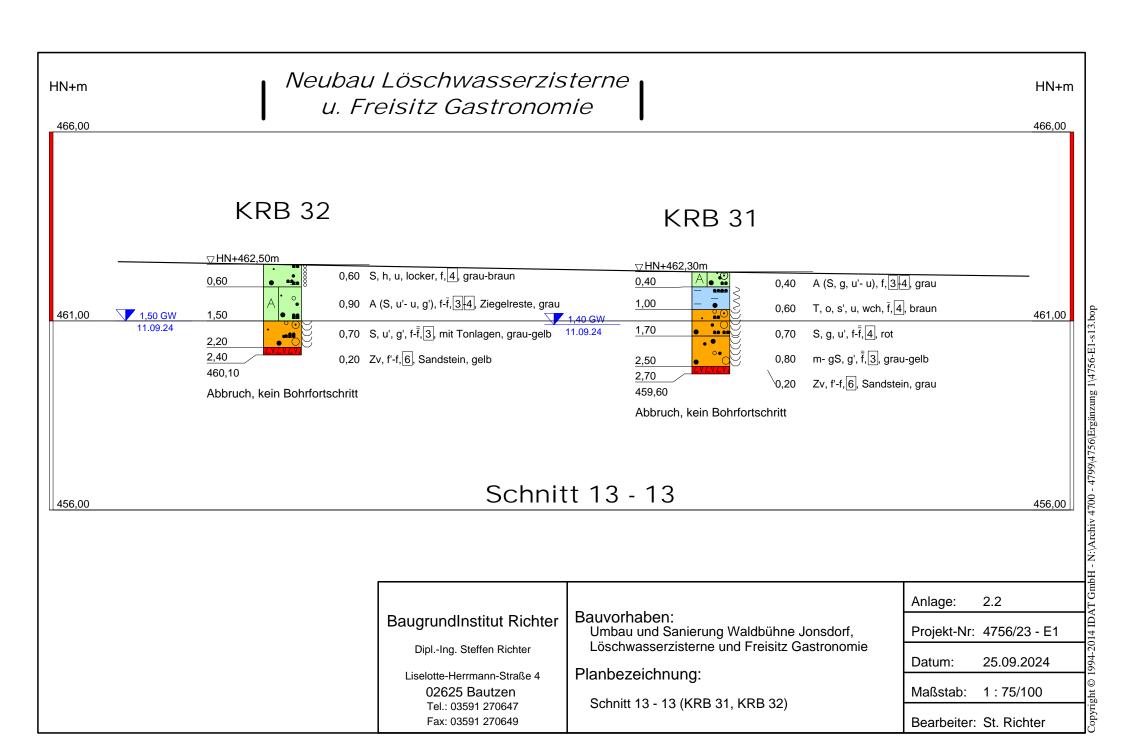
${ t Baugrund} { t Institut} \ { t Richter}$

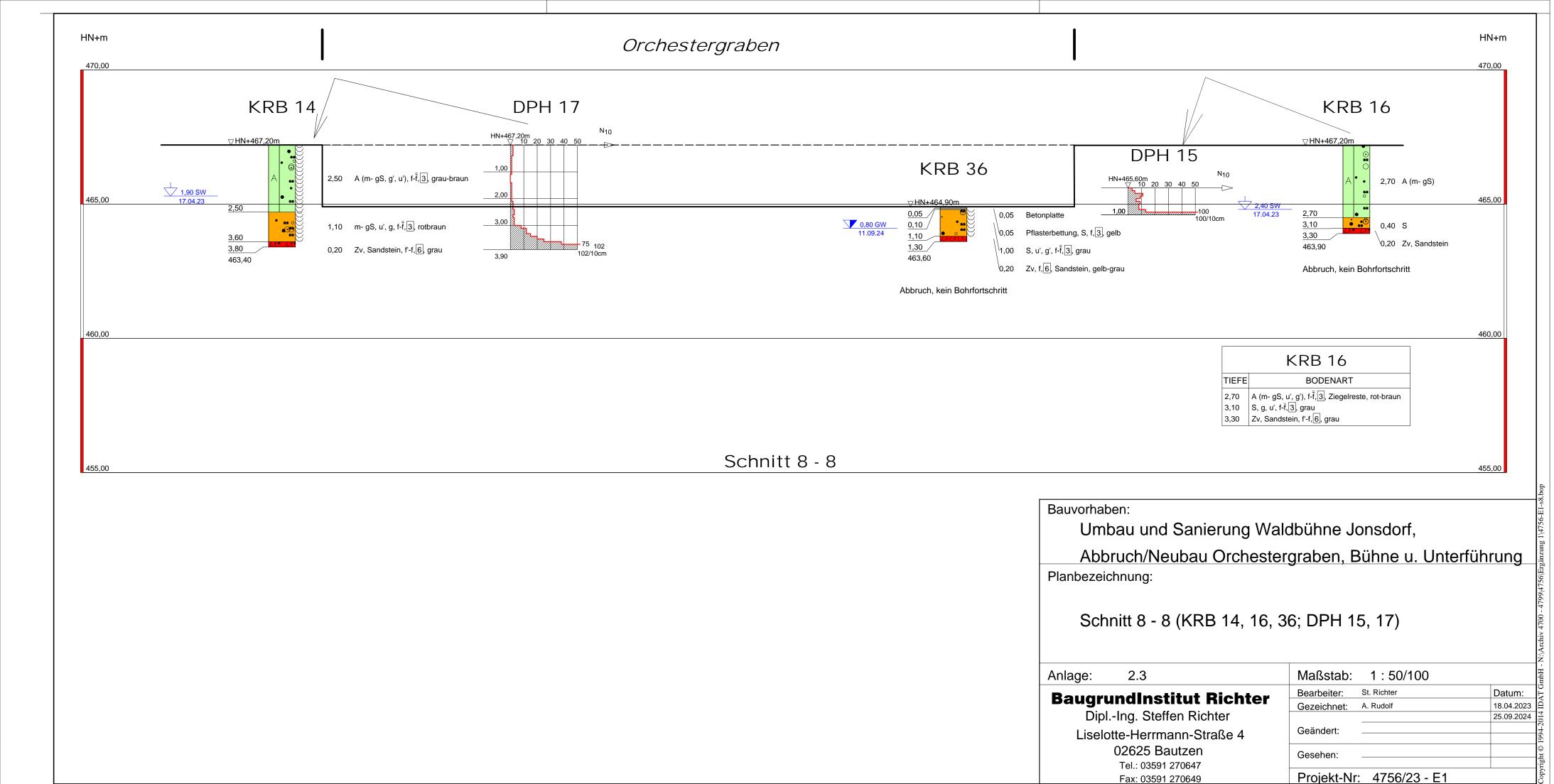

Anlage 0

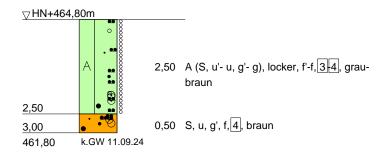

ZEICHENERKLÄRUNG (s. DIN 4023) UNTERSUCHUNGSSTELLEN PROBENENTNAHME UND GRUNDWASSER Proben-Güteklasse nach DIN 4021 Tab.1 Sch Schurf Grundwasser angebohrt Bohrung Grundwasser nach Bohrende Bohrung mit durchgehender Kerngewinnung BK Ruhewasserstand DPL Rammsondierung leichte Sonde DIN 4094 Schichtwasser angebohrt DPM Rammsondierung mittelschwere Sonde DIN 4094 Schichtwasser nach Bohrende DPH Rammsondierung schwere Sonde DIN 4094 Sonderprobe KRB Kleinrammbohrung Bohrprobe (Eimer 5 I) RKS Rammkernsondierung Bohrprobe (Glas 0.7I) GWM Grundwassermeßstelle k.GW kein Grundwasser **BODENARTEN FELSARTEN** Fels, all gemein Auffüllung Ζ Υ Blöcke mit Blöcken Fels, verwittert Ζv Bk Granit Gr Braunkohle Gerölle geröllführend Gerger Kalkstein Kst Geschiebelehm Konglomerat Κg Lg Geschiebemergel mergelig Mg me Mergelstein Mst G Sandstein Sst Kies kiesig g F Schluffstein Mudde organisch Ust 0 Oberboden (Mutterboden) Tonstein Tst Sand sandig S Schluff schluffig U u X T Steine steinig Χ 000 tonig Ton t Н Torf humos h Zi Ziegel KORNGRÖßENBEREICH **NEBENANTEILE** schwach (< 15 %) stark (ca. 30-40 %) sehr schwach; = se fein mittel grob m sehr stark g **KALKGEHALT** k° kalkfrei **FEUCHTIGKEIT** trocken k+ kalkhaltig schwach feucht k++ stark kalkhaltig feucht **KONSISTENZ** brg ≴breiig wch ≶weich stark feucht halbfest ∀naß stf steif hfst 8 locker ||fest HÄRTE fst loc h hart mdch § mitteldicht dch dicht mh mittelhart VERWITTERUNG vo unverwittert gh geringhart schwach verwittert brü brüchig verwittert mürbe mü <u>V</u> stark verwittert **SCHICHTUNG** bankig b zersetzt plattig z рl gstü grobstückig dickplattig ZERFALL dipl st stückig dpl dünnplattig klstü kleinstückig bl blättrig massig grusig ma dickbankig diba dünnbankiq dba BODENGRUPPE nach DIN 18 196: z.B. (UL) = leicht plastische Schluffe BODENKLASSE nach DIN 18 300: z.B. 4 = Klasse 4 **KLÜFTUNG** kp kompakt klü' schwach klüftig <u>klü</u> ≨klüftig 臺stark klüftig 臺sehr stark klüftig klü **BOHRMITTEL** Einfachkernrohr Doppelkernrohr DKH Verrohrung **RAMMSONDIERUNG NACH DIN 4094** DPM-A 3.57 cm 10.00 cm² 2.20 cm 30.00 kg 20.00 cm

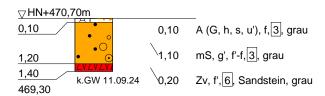

3.57 cm 10.00 cm² 2.20 cm 10.00 kg


Schlagzahlen für 10 cm Eindringtiefe


Snitzendurchmesser Spitzendurchmesser Spitzenquerschnitt Gestängedurchmesser Rammbärgewicht Fallhöhe






Zuschauerbereich

KRB 35

Fluchtweg

KRB 37

Abbruch, kein Bohrfortschritt

BaugrundInstitut Richter

Dipl.-Ing. Steffen Richter

Liselotte-Herrmann-Straße 4 02625 Bautzen Tel.: 03591 270647 Fax: 03591 270649

Bauvorhaben:

Umbau und Sanierung Waldbühne Jonsdorf, Zuschauerber., Fluchtweg, Weg innerh. Waldbühne

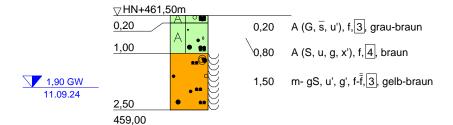
Planbezeichnung:

Bohrprofile

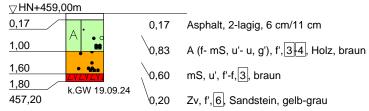
Anlage: 2.4

Projekt-Nr: 4756/23 - E1

Datum: 25.09.2024


Maßstab: d. H. 1:100

Bearbeiter: St. Richter


opyright © 1994-2014 IDAT GmbH - N∴Archiv 4700 - 4799\4756\Ergänzung 1\4756-E1-EZ_KRB 35-39.bop

Weg innerhalb Waldbühne

KRB 38

KRB 39

Abbruch, kein Bohrfortschritt

BaugrundInstitut Richter

Dipl.-Ing. Steffen Richter

Liselotte-Herrmann-Straße 4 02625 Bautzen Tel.: 03591 270647 Fax: 03591 270649

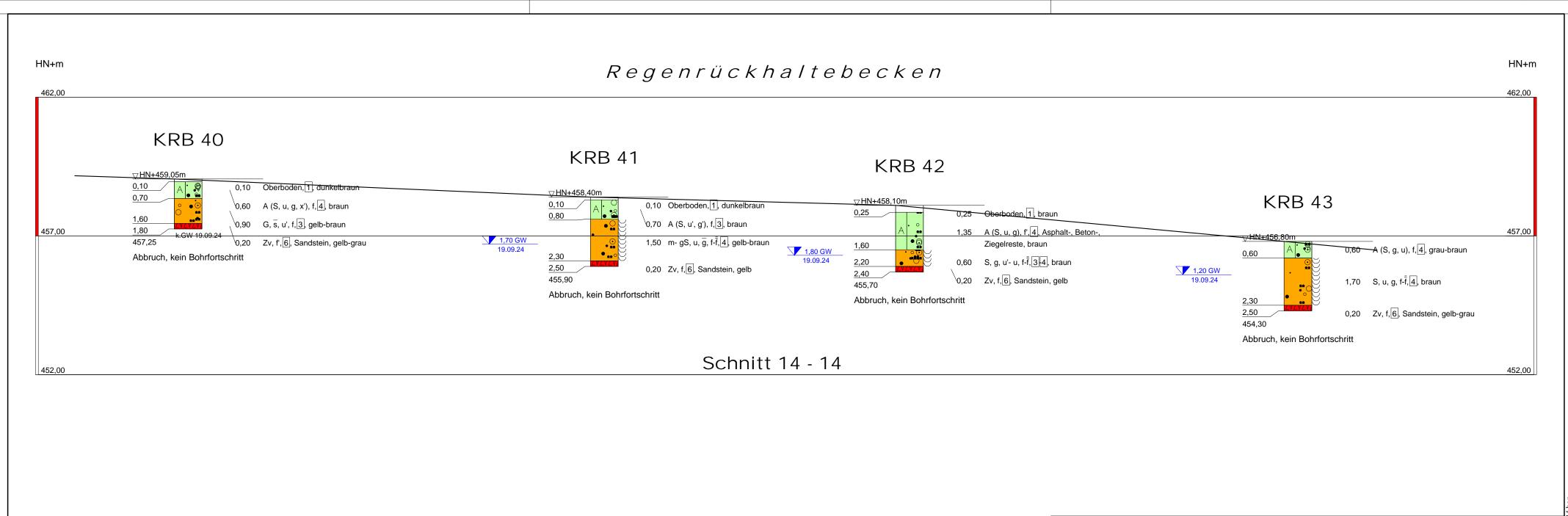
Bauvorhaben:

Umbau und Sanierung Waldbühne Jonsdorf, Zuschauerber., Fluchtweg, Weg innerh. Waldbühne

Planbezeichnung:

Bohrprofile

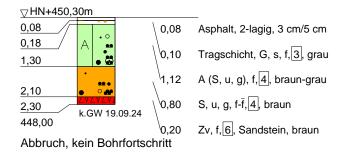
Anlage: 2.5
Projekt-Nr: 4756

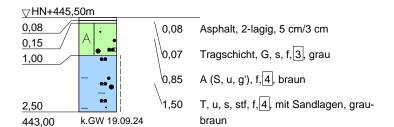

Projekt-Nr: 4756/23 - E1

Datum: 25.09.2024

Maßstab: d. H. 1:100

Bearbeiter: St. Richter


opyright © 1994-2014 IDAT GmbH - N∴Archiv 4700 - 4799\4756\Ergänzung 1\4756-E1-EZ_KRB 35-39.bop


Bauvorhaben:		
Umbau und Sanierung Wal	dbühne Jonsdorf,	
Regenrückhaltebecken		
Planbezeichnung:		
Schnitt 14 - 14 (KRB 40, KF	RB 41, KRB 42, KRB 43)	
Anlage: 2.6	Maßstab: 1:50/100	
BaugrundInstitut Richter	Bearbeiter: St. Richter Da	atum:
DiplIng. Steffen Richter	Gezeichnet: A. Rudolf 25	.09.2024
Liselotte-Herrmann-Straße 4	Geändert:	
02625 Bautzen		
Tel.: 03591 270647	Gesehen:	
Fax: 03591 270649	Projekt-Nr: 4756/23 - E1	

Weg außerhalb Waldbühne

KRB 44

KRB 45

BaugrundInstitut Richter

Dipl.-Ing. Steffen Richter

Liselotte-Herrmann-Straße 4 02625 Bautzen Tel.: 03591 270647 Fax: 03591 270649 Bauvorhaben:

Umbau und Sanierung Waldbühne Jonsdorf, Weg außerhalb Waldbühne

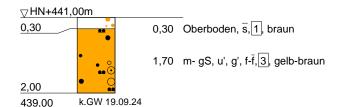
Planbezeichnung:

Bohrprofile

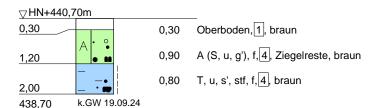
Anlage: 2.7

Projekt-Nr: 4756/23 - E1

Datum: 25.09.2024


Maßstab: d. H. 1:100

Bearbeiter: St. Richter


opyright © 1994-2014 IDAT GmbH - N:\Archiv 4700 - 4799\4756\Ergänzung 1\4756-E1-EZ_KRB 44+45.bop

Parkplatz Großschönauer Straße

KRB 46

KRB 47

BaugrundInstitut Richter

Dipl.-Ing. Steffen Richter

Liselotte-Herrmann-Straße 4 02625 Bautzen Tel.: 03591 270647 Fax: 03591 270649 Bauvorhaben:

Umbau und Sanierung Waldbühne Jonsdorf, Parkplatz Großschönauer Straße

Planbezeichnung:

Bohrprofile

Anlage: 2.8

Projekt-Nr: 4756/23 - E1

Datum: 25.09.2024

Maßstab: d. H. 1:100

Bearbeiter: St. Richter

opyright © 1994-2014 IDAT GmbH - N:\Archiv 4700 - 4799\4756\Ergänzung 1\4756-E1-EZ_KRB 46+47.bop

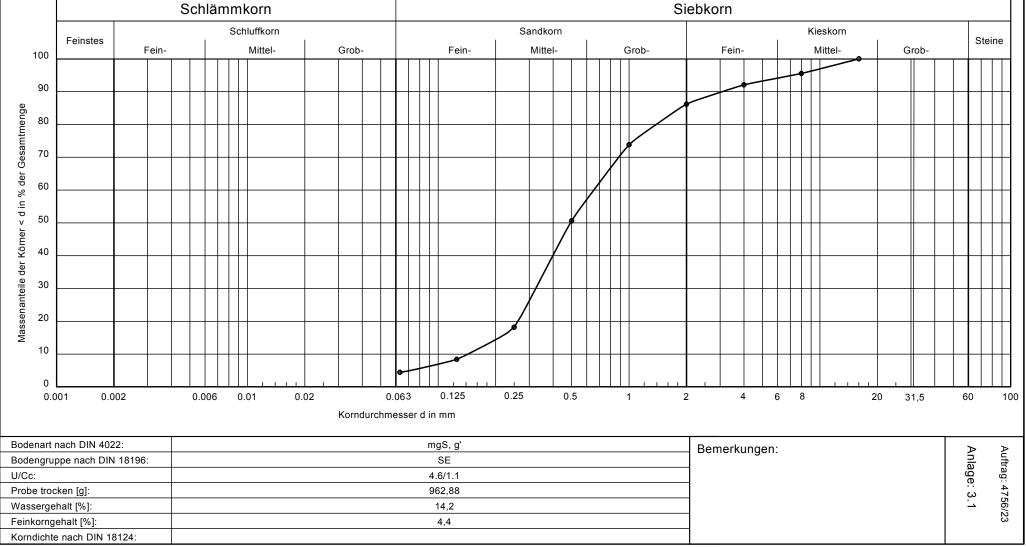
L.-Herrmann-Straße 4 02625 Bautzen

Tel.: 03591 270647 Fax: 03591 270649

Korngrößenverteilung

nach DIN EN ISO 17892-4

Umbau und Sanierung der Waldbühne im Kurort Jonsdorf


 Aufschluss:
 KRB 31

 Tiefe:
 1,7 - 2,5 m

 Probe entnommen am:
 11.09.2024

 Probe entnommen von:
 M. Händler

Bearbeiter: J. Scholze Datum: 12.09.2024 gepr.:

L.-Herrmann-Straße 4 02625 Bautzen

Tel.: 03591 270647 Fax: 03591 270649

Korngrößenverteilung

nach DIN EN ISO 17892-4

Umbau und Sanierung der Waldbühne im Kurort Jonsdorf


 Aufschluss:
 KRB 33

 Tiefe:
 1,5 - 3,0 m

 Probe entnommen am:
 11.09.2024

 Probe entnommen von:
 M. Händler

Bearbeiter: J. Scholze Datum: 12.09.2024 gepr.:

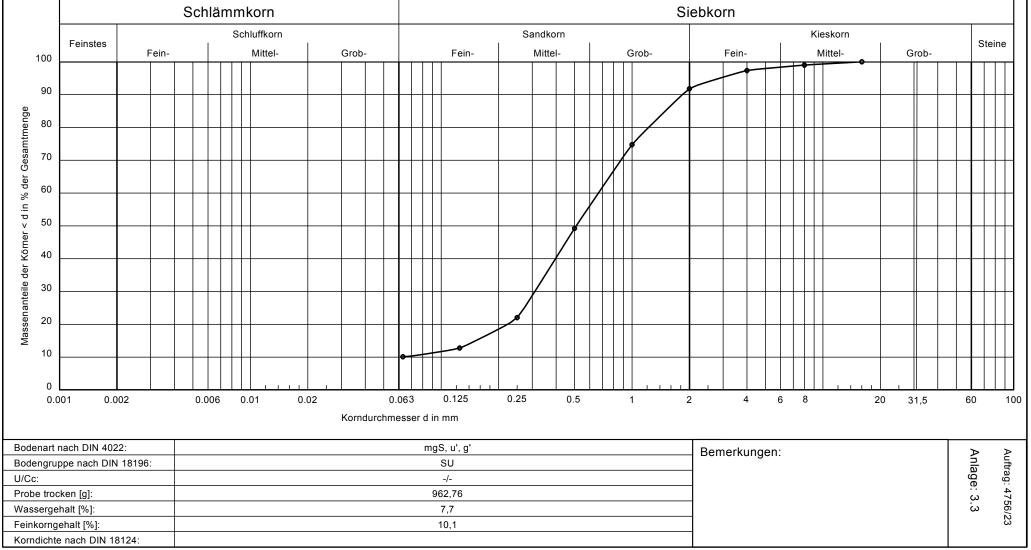
L.-Herrmann-Straße 4 02625 Bautzen

Tel.: 03591 270647 Fax: 03591 270649

Korngrößenverteilung

nach DIN EN ISO 17892-4

Umbau und Sanierung der Waldbühne im Kurort Jonsdorf


 Aufschluss:
 KRB 38

 Tiefe:
 1,0 - 2,5 m

 Probe entnommen am:
 11.09.2024

 Probe entnommen von:
 M. Händler

Bearbeiter: J. Scholze Datum: 12.09.2024 gepr.:

L.-Herrmann-Straße 4 02625 Bautzen

Tel.: 03591 270647 Fax: 03591 270649

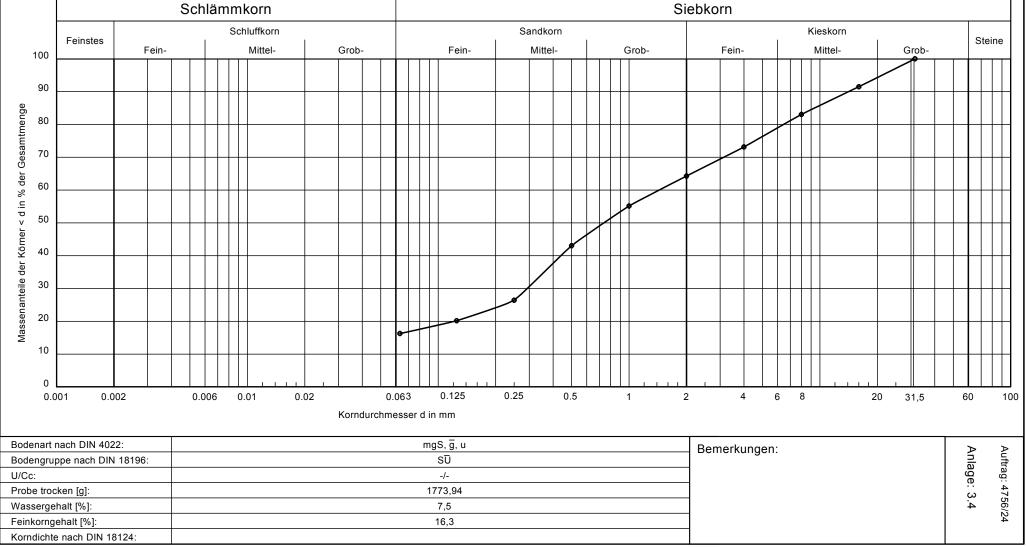
Korngrößenverteilung

nach DIN EN ISO 17892-4

GHT Görlitz - Zittau im Kurort Jonsdorf

Aufschluss:..... KRB 41

Umbau und Sanierung Waldbühne


Autschluss: KRB 41

Tiefe: 0,8 - 2,3 m

Probe entnommen am: 19.09.2024

Probe entnommen von: M. Händler

Bearbeiter: J. Scholze Datum: 23.09.2024 gepr.:

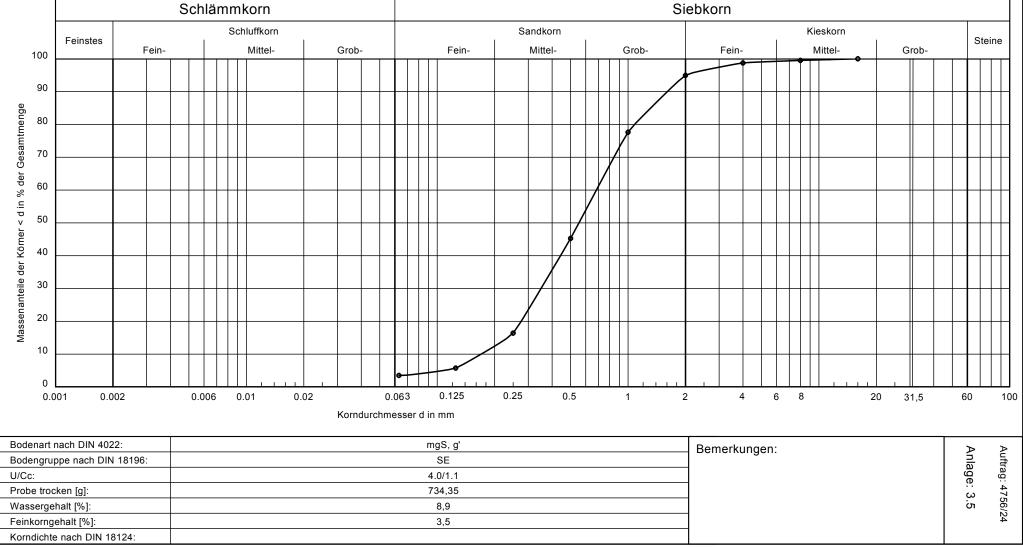
L.-Herrmann-Straße 4 02625 Bautzen

Tel.: 03591 270647 Fax: 03591 270649

Korngrößenverteilung

nach DIN EN ISO 17892-4

Umbau und Sanierung Waldbühne GHT Görlitz - Zittau im Kurort Jonsdorf


 Aufschluss:
 KRB 46

 Tiefe:
 0,3 - 2,0 m

 Probe entnommen am:
 19.09.2024

 Probe entnommen von:
 M. Händler

Bearbeiter: J. Scholze Datum: 23.09.2024 gepr.:

Auftrag 4756/23 - E1

Waldbühne Jonsdorf

Anlage 4

ANALYSENERGEBNISSE

BAUGRUNDINSTITUT RICHTER

Liselotte-Herrmann-Straße 4 02625 Bautzen

Tel.: 03591 270 647 · Fax: 03591 270 649 E-Mail: baugrund-richter@t-online.de

Eurofins Umwelt Ost GmbH - Lindenstraße 11 - Gewerbegebiet Freiberg Ost - D-09627 Bobritzsch-Hilbersdorf

Baugrund Institut Richter Liselotte-Hermann-Str. 4 02625 Bautzen

Titel: Prüfbericht zu Auftrag 12441107

EOL Auftragsnummer: **006-10544-73572**Prüfberichtsnummer: **AR-24-FR-054732-01**

Auftragsbezeichnung: Umbau und Sanierung Waldbühne Jonsdorf (4756/23)

Anzahl Proben: 3

Probenart: Boden
Probenahmedatum: 19.09.2024

Probenehmer: keine Angabe, Probe(n) wurde(n) an das Labor ausgehändigt

Probeneingangsdatum: 23.09.2024

Prüfzeitraum: 23.09.2024 - 08.10.2024

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Das beauftragte Prüflaboratorium ist durch die DAkkS nach DIN EN ISO/IEC 17025:2018 DAkkS akkreditiert. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14081-01-00) aufgeführten Umfang.

Anhänge:

XML_Export_AR-24-FR-054732-01.xml

Alessandro Fulini Analytical Service Manager Tel. +49 37133435611 Digital signiert, 08.10.2024 Alessandro Fulini Analytical Service Manager

				Probenbeze	ichnung	MP 1	MP 2	MP 3
				Probenahme	edatum/ -zeit	19.09.2024	19.09.2024	19.09.2024
				EOL Proben	nummer	005-10544- 286505	005-10544- 286507	005-10544- 286508
				Probennum	mer	124147864	124147865	124147866
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
Probenvorbereitung Feststo	ffe							
Königswasseraufschluss (angewandte Methode)	FR	F5	L8:DIN EN 13657:2003-01;F5:DIN EN ISO 54321:2021-4			mittels thermoregu- lierbarem Graphitblock	mittels thermoregu- lierbarem Graphitblock	mittels thermoregu- lierbarem Graphitblock
Physikalisch-chemische Ke	nngrö	Ben au	s der Originalsubs	tanz				
Trockenmasse	FR	F5	L8:DIN EN 14346:2007-03A; F5:DIN EN 15934:2012-11A	0,1	Ma%	87,9	91,1	90,5
Elemente aus dem Königsw	assera	ufsch	luss nach DIN EN 1	3657: 2003-0	1			
Arsen (As)	FR	F5	DIN EN 16171:2017-01	0,8	mg/kg TS	6,4	6,5	4,8
Blei (Pb)	FR	F5	DIN EN 16171:2017-01	2	mg/kg TS	17	12	17
Cadmium (Cd)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	< 0,2	< 0,2	< 0,2
Chrom (Cr)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	11	18	11
Kupfer (Cu)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	10	7	7
Nickel (Ni)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	7	14	8
Quecksilber (Hg)	FR	F5	DIN EN 16171:2017-01	0,07	mg/kg TS	0,10	< 0,07	0,26
Thallium (TI)	FR	F5	DIN EN 16171:2017-01	0,2	mg/kg TS	< 0,2	< 0,2	< 0,2
Zink (Zn)	FR	F5	DIN EN 16171:2017-01	1	mg/kg TS	48	23	31
Organische Summenparame	eter au	ıs der	Originalsubstanz					
тос	FR	F5	DIN EN 15936: 2012-11 (AN,L8: Ver.A; FG,F5: Ver.B)	0,1	Ma% TS	0,7	1,1	0,8
EOX	FR	F5	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	< 1,0	< 1,0	< 1,0
Kohlenwasserstoffe C10-C22	FR	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40	< 40	< 40
Kohlenwasserstoffe C10-C40	FR	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40	< 40	< 40

Umwelt

				Probenbeze	ichnung	MP 1	MP 2	MP 3	
				Probenahme	edatum/ -zeit	19.09.2024	19.09.2024	19.09.2024	
				EOL Proben	nummer	005-10544- 286505	005-10544- 286507	005-10544- 286508	
				Probennum	mer	124147864	124147865	124147866	
Parameter	Lab.	Akkr.	Methode	BG	Einheit				
PAK aus der Originalsubsta	anz								
Naphthalin	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾	n.n. ²⁾	n.n. ²⁾	
Acenaphthylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	n.n. ²⁾	n.n. ²⁾	n.n. ²⁾	
Acenaphthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	1,1	0,43	n.n. ²⁾	
Fluoren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	1,1	0,37	n.n. ²⁾	
Phenanthren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	9,2	3,3	< 0,05	
Anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	5,3	2,4	n.n. ²⁾	
Fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	24	13	0,07	
Pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	21	11	0,06	
Benzo[a]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	10	6,4	< 0,05	
Chrysen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	7,5	4,6	< 0,05	
Benzo[b]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	9,3	6,7	0,06	
Benzo[k]fluoranthen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	3,5	2,6	< 0,05	
Benzo[a]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	6,2	4,6	< 0,05	
Indeno[1,2,3-cd]pyren	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	3,5	2,6	< 0,05	
Dibenzo[a,h]anthracen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,92	0,69	n.n. ²⁾	
Benzo[ghi]perylen	FR	F5	DIN ISO 18287: 2006-05	0,05	mg/kg TS	2,7	2,2	< 0,05	
Summe 16 PAK nach EBV: 2021	FR		berechnet		mg/kg TS	105	60,9	0,365	
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		mg/kg TS	105	60,9	0,365	
PCB aus der Originalsubsta	anz								
PCB 28	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾	n.n. ²⁾	n.n. ²⁾	
PCB 52	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾	n.n. ²⁾	n.n. ²⁾	
PCB 101	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾	n.n. ²⁾	n.n. ²⁾	
PCB 153	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾	n.n. ²⁾	n.n. ²⁾	
PCB 138	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾	n.n. ²⁾	n.n. ²⁾	
PCB 180	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	n.n. ²⁾	n.n. ²⁾	n.n. ²⁾	
Summe 6 PCB nach EBV: 2021	FR		berechnet		mg/kg TS	(n. b.) ³⁾	(n. b.) ³⁾	(n. b.) ³⁾	
PCB 118	FR	F5	DIN EN 17322: 2021-03	0,01	mg/kg TS	< 0,01	< 0,01	< 0,01	
Summe 7 PCB nach EBV: 2021	FR		berechnet	·	mg/kg TS	0,005	0,005	0,005	
Kenngr. d. Eluatherst. f. org	ı., nich	⊥ t-flüch	t. Par. nach DIN 19	529: 2015-12					
Trübung im Eluat nach DIN EN ISO 7027: 2000-04	FR	F5		10	FNU	330	41	340	
Physikalisch-chem. Kenngı	⊥ rößen a	us de	⊔ m 2:1-Schütteleluat	⊥ t nach DIN 19)529: 2015-12				
pH-Wert	FR	F5	DIN EN ISO 10523 (C5): 2012-04			6,2	5,4	5,2	
Temperatur pH-Wert	FR	F5	DIN 38404-4 (C4): 1976-12		°C	20,3	22,3	22,1	
Leitfähigkeit bei 25°C	FR	F5	DIN EN 27888 (C8): 1993-11	5	μS/cm	126	107	32	
Anionen aus dem 2:1-Schü	ttelelua	at nach		2	1	1	1	ı	
Sulfat (SO4)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	12	36	< 1,0	

Umwelt

			Probenbezeich		chnung	MP 1	MP 2	MP 3
				Probenahme	datum/ -zeit	19.09.2024	19.09.2024	19.09.2024
				EOL Probeni	nummer	005-10544- 286505	005-10544- 286507	005-10544- 286508
				Probennumn	ner	124147864	124147865	124147866
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
Elemente aus dem 2:1-Sch	nüttelelu	iat nac	h DIN 19529: 2015-	12				
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,003	0,010	0,014
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,069	0,014	0,145
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003	< 0,0003	0,0005
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,003	0,009	0,012
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,009	< 0,001	0,021
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,002	0,006	0,007
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08	0,0001	mg/l	< 0,0001	< 0,0001	< 0,0001
Thallium (TI)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,0002	mg/l	< 0,0002	< 0,0002	< 0,0002
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	0,23	0,18	0,34

Umwelt

				Probenbeze	ichnuna	MP 1	MP 2	MP 3
					edatum/ -zeit	19.09.2024	19.09.2024	19.09.2024
				EOL Proben	nummer	005-10544-	005-10544-	005-10544-
						286505	286507	286508
				Probennum	mer	124147864	124147865	124147866
Parameter			Methode	BG	Einheit			
PAK aus dem 2:1-Schüttelel	uat na	ch DI				I		
Naphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,05	μg/l	0,12	n.n. ²⁾	< 0,05
Acenaphthylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,03	μg/l	n.n. ²⁾	n.n. ²⁾	n.n. ²⁾
Acenaphthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	0,34	0,05	< 0,02
Fluoren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,13	0,04	0,03
Phenanthren	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	0,34	0,05	0,05
Anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	0,192	0,060	n.n. ²⁾
Fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,02	μg/l	1,4	0,71	< 0,02
Pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,93	0,55	< 0,01
Benzo[a]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,32	0,19	< 0,01
Chrysen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,32	0,15	< 0,01
Benzo[b]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,12	0,08	< 0,01
Benzo[k]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,04	0,04	< 0,01
Benzo[a]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	0,071	0,057	< 0,008
Indeno[1,2,3-cd]pyren	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,02	< 0,01	n.n. ²⁾
Dibenzo[a,h]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09	0,008	μg/l	< 0,008	< 0,008	n.n. ²⁾
Benzo[ghi]perylen	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,03	0,02	n.n. ²⁾
Summe 16 PAK nach EBV: 2021	FR		berechnet		μg/l	4,38	2,01	0,154
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet		μg/l	4,26	2,01	0,129
1-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,03	< 0,01	< 0,01
2-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09	0,01	μg/l	0,04	n.n. ²⁾	< 0,01
Summe Methylnaphthaline nach EBV: 2021	FR		berechnet		μg/l	0,070	0,005	0,010
Summe Naphthalin + Methylnaphthaline nach EBV: 2021	FR		berechnet		μg/l	0,190	0,005	0,035
PCB aus dem 2:1-Schüttelel	uat na	ch DI	N 19529: 2015-12					
PCB 28	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	n.n. ²⁾	< 0,001
PCB 52	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	n.n. ²⁾	n.n. ²⁾
PCB 101	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	n.n. ²⁾	< 0,001
PCB 153	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	n.n. ²⁾	n.n. ²⁾
PCB 138	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	n.n. ²⁾	< 0,001
PCB 180	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	n.n. ²⁾	n.n. ²⁾
Summe 6 PCB nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾	(n. b.) ³⁾	0,0015
PCB 118	FR	F5	DIN 38407-37: 2013-11	0,001	μg/l	n.n. ²⁾	< 0,001	< 0,001
Summe 7 PCB nach EBV: 2021	FR		berechnet		μg/l	(n. b.) ³⁾	0,0005	0,0020

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

Kommentare zu Ergebnissen

- ¹⁾ Die Gleichwertigkeit zu DIN EN 13657: 2003-01 ist nachgewiesen. DIN EN ISO 54321:2021-04 wird als Referenzverfahren in der Methodensammlung FBU/LAGA Version 2.0 Stand 15.06.2021 ausdrücklich empfohlen. Zur Gleichwertigkeit von Aufschlussverfahren siehe für EBV: FAQ des LfU Bayern; für BBodSchV: §24.11.
- ²⁾ nicht nachweisbar
- 3) nicht berechenbar

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Lindenstraße 11, Gewerbegebiet Freiberg Ost, Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit F5 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14081-01-00 akkreditiert.

Auftrag 4756/23 – E 1 Waldbühne Jonsdorf Anlage 5.1

Gegenüberstellung der Analysenergebnisse mit Einstufungswerten nach EBV

			Analysenergebniss	6e		Materialv	verte EBV	Anlage 1	Tab.3 Bo	denmater	ial (BM)	
Probent	ezeichnung	MP 1	MP 2	MP 3		BM-0	BM-0					
	Bodenart	Lehm	Lehm	Lehm	Sand	Lehm, Schluff	Ton	BM-0*	BM-F0*	BM-F1	BM-F2	BM-F3
Feststoffparameter	Einheit											
mineralische Fremdbestandteile	Vol%	< 10	< 10	< 10	bis 10	bis 10	bis 10	bis 10	bis 50	bis 50	bis 50	bis 50
Arsen (As)	mg/kg TS	6,4	6,5	4,8	10	20	20	20	40	40	40	150
Blei (Pb)	mg/kg TS	17	12	17	40	70	100	140	140	140	140	700
Cadmium (Cd)	mg/kg TS	< 0,2	< 0,2	< 0,2	0,4	1	1,5	1	2	2	2	10
Chrom (Cr)	mg/kg TS	11	18	11	30	60	100	120	120	120	120	600
Kupfer (Cu)	mg/kg TS	10	7	7	20	40	60	80	80	80	80	320
Nickel (Ni)	mg/kg TS	7	14	8	15	50	70	100	100	100	100	350
Quecksilber (Hg)	mg/kg TS	0,10	< 0,07	0,26	0,2	0,3	0,3	0,6	0,6	0,6	0,6	5
Thallium (TI)	mg/kg TS	< 0,2	< 0,2	< 0,2	0,5	1	1	1	2	2	2	7
Zink (Zn)	mg/kg TS	48	23	31	60	150	200	300	300	300	300	1200
TOC	Ma% TS	0,7	1,1	0,8	1	1	1	1	5	5	5	5
EOX	mg/kg TS	< 1,0	< 1,0	< 1,0	1	1	1	1				
Kohlenwasserstoffe C10-C22	mg/kg TS	< 40	< 40	< 40				300	300	300	300	1000
Kohlenwasserstoffe C10-C40	mg/kg TS	< 40	< 40	< 40				600	600	600	600	2000
Benzo[a]pyren	mg/kg TS	6,2	4,6	< 0,05	0,3	0,3	0,3					
Summe 16 EPA-PAK exkl.BG	mg/kg TS	105 (> BM-F3)	60,9 (> BM-F3)	0,365				0,2	0,3	1,5	3,8	20
Summe 6 DIN-PCB exkl. BG	mg/kg TS	n. b.	n. b.	n. b.	0,05	0,05	0,05	0,1				

BAUGRUND NSTITUT RICHTER

Auftrag 4756/23 – E 1 Waldbühne Jonsdorf Anlage 5.2

		MD 4	MP 2	MD 0		BM-0	ı	DM 0+	BM-F0*	DM 54	BM-F2	BM-F3
		MP 1	IVIP 2	MP 3	Sand	Lehm, Schluff	Ton	BM-0*		BM-F1		DIVI-F3
Eluatparameter												
pH-Wert		6,2	5,4	5,2					6,5-9,5	6,5-9,5	6,5-9,5	5,5-12,0
Leitfähigkeit bei 25°C	μS/cm	126	107	32				350	350	500	500	2000
Sulfat (SO4)	mg/l	12	36	< 1,0	250	250	250	250	250	450	450	1000
Arsen (As)	μg/l	3	10	14				8	12	20	85	100
Blei (Pb)	μg/l	69	14	145				23	35	90	250	470
Cadmium (Cd)	μg/l	< 0,3	< 0,3	< 0,3				2	3	3	10	15
Chrom (Cr)	μg/l	3	9	12				10	15	150	290	530
Kupfer (Cu)	μg/l	9	< 1	21				20	30	110	170	320
Nickel (Ni)	μg/l	2	6	7				20	30	30	150	280
Quecksilber (Hg)	μg/l	< 0,1	< 0,1	< 0,1				0,1				
Thallium (TI)	μg/l	< 0,2	< 0,2	< 0,2				0,2				
Zink (Zn)	μg/l	230	180	340				100	150	160	840	1600
PAK16	μg/l	4,38	2,01	0,129	3	3	3	6	6	6	9	30
Naphthalin u. Methylnaphthaline, gesamt	μg/l	0,190	0,005	0,035				2				
PCB6	μg/l	n. b.	n. b.	0,0015				0,01				
Ei	nstufung	> BM-F3	> BM-F3	BM-F2								

n. b. ... nicht berechenbar

n. n. ... nicht nachweisbar